skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Venugopalan, Raju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 12, 2026
  2. A<sc>bstract</sc> We construct a novel flux tube entanglement entropy (FTE2), defined as the excess entanglement entropy relative to the vacuum of a region of color flux stretching between a heavy quark-anti-quark pair in pure gauge Yang-Mills theory. We show that FTE2can be expressed in terms of correlators of Polyakov loops, is manifestly gauge-invariant, and therefore free of the ambiguities in computations of the entanglement entropy in gauge theories related to the choice of the center algebra. Employing the replica trick, we compute FTE2for SU(2) Yang-Mills theory in (2+1)D and demonstrate that it is finite in the continuum limit. We explore the properties of FTE2for a half-slab geometry, which allows us to vary the width and location of the slab, and the extent to which the slab cross-cuts the color flux tube. Following the intuition provided by computations of FTE2in (1+1)D, and in a thin string model, we examine the extent to which our FTE2results can be interpreted as the sum of an internal color entropy and a vibrational entropy corresponding to the transverse excitations of the string. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025